Case Study III: Inception

Challenges in object recognition

- Salient parts have great variation in sizes
 - Hence, the receptive fields should vary in size accordingly
- o Intuitively, deeper models are preferred
 - But very deep nets are prone to overfitting

Picture credit: Bharath

Inception module

- o Multiple kernel filters of different sizes $(1 \times 1, 3 \times 3, 5 \times 5)$
 - Naïve version
 - Very expensive!
- Add intermediate 1 × 1 convolutions for compression

Picture credit: Bharath Raj

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Architecture

- 9 Inception Modules
 - 22 layers deep (27 with the pooling layers)
 - Global average pooling at the end of last Inception Module
- Because of the increased depth → Vanishing gradients
- Inception solution to vanishing gradients: intermediate classifiers

Picture credit: **Bharath**

Inceptions v2, v3, v4,

- \circ Factorize 5 \times 5 in two 3 \times 3 filters
- Factorize $n \times n$ in two $n \times 1$ and $1 \times n$ filters (quite a lot cheaper)
- Make nets wider

o RMSprop, BatchNorms, ...

